On the properties of the solution set of nonconvex evolution inclusions of the subdifferential type

نویسنده

  • Nikolaos S. Papageorgiou
چکیده

In this paper we consider nonconvex evolution inclusions driven by time dependent convex subdifferentials. First we establish the existence of a continuous selection for the solution multifunction and then we use that selection to show that the solution set is path connected. Two examples are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconvex Evolution Inclusions Generated by Time - Dependent Subdifferential Operators

We consider nonlinear nonconvex evolution inclusions driven by time-varying subdifferentials 0(t,x) without assuming that (t,.) is of compact type. We show the existence of extremal solutions and then we prove a strong relaxation theorem. Moreover,r we show that under a Lipschitz condition on the orientor field, the solution set of the nonconvex problem is path-connected in C(T,H). These result...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Parametrized Relaxation for Evolution Inclusions of the Subdifferential Type

In this paper we consider parametric nonlinear evolution inclusions driven by time-dependent subdiierentials. First we prove some continuous dependence results for the solution set (of both the convex and nonconvex problems) and for the set of solution-selector pairs (of the convex problem). Then we derive a continuous version of the \Filippov-Gronwall" inequality and using it, we prove the par...

متن کامل

On Parametric Evolution Inclusions of the Subdifferential Type with Applications to Optimal Control Problems

In this paper we study parametric evolution inclusions of the subdifferential type and their applications to the sensitivity analysis of nonlinear, infinite dimensional optimal control problems. The parameter appears in all the data of the problem, including the subdifferential operator. First we establish several continuity results for the solution multifunction of the subdifferential inclusio...

متن کامل

On the Structure of the Solution Set of Evolution Inclusions with Time{dependent Subdifferentials

In this paper we consider evolution inclusions driven by a time dependent subdifferential operator and a set-valued perturbation term. First we show that the problem with a convex-valued, h∗-u.s.c. orientor field (i.e. perturbation term) has a nonempty solution set which is an Rδ-set in C(T,H), in particular then compact and acyclic. For the non convex problem (i.e. the orientor field is non co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010